Difficulties in taint data propagation without an IR

I’m currently building a tool that propagates taint information through a program as it executes. Essentially this consists of marking the data read by certain syscalls (e.g. read and recv) as ‘tainted’, or user controllable, followed by tracking the flow of this data through the program. The ‘propagation’ occurs when tainted data is used as a source in an instruction, thus tainting the result. For example, if the data at address 0x100 is tainted and the instruction mov ebx, [0x100] is executed then ebx is now tainted.

To track all possible taint propagation is a fairly involved task. The mov instruction for instance has 4 potential configurations (memory to memory, register to memory etc.) and many instructions (arithmetic ones for instance), do more than simply copying memory. Considering that most binaries from the /bin directory on Linux have between 70-100 unique instructions, and many of these instructions have unique semantics in terms of how they spread the data from source operands into the destination operands, modelling these effects for each instruction would seem to be a fairly involved task.

It’s also a task I’m having to deal with at the moment due to my choice of dynamic binary analysis (DBI) framework. I am using Pin, a free but closed source DBI. One of Pin’s primary goals is speed and thus it can’t afford something like converting each basic block to an intermediary representation (IR) (like Valgrind does). This means we are left with convenience functions to access operators and operands and are required to perform a case by case analysis on each instruction. Luckily, the functions provided by Pin are quite well thought out. Let us consider how to process an instruction like mov dword ptr ds[esi+edx*4+0x2a0], ecx, where ecx is tainted. First of all, we must register a function with Pin to instrument each instruction. This is about as simple as you’d expect.

INS_AddInstrumentFunction(instruction, 0);

This function will then be passed each instruction and will have to decide the correct way to handle it.

instruction(INS ins, VOID *v)
    UINT32 cat = INS_Category(ins);

    switch (cat) {
            switch (INS_Opcode(ins)) {
                case XED_ICLASS_XCHG:
                case XED_ICLASS_MOV:
etc etc

As you can see, we can work at two levels of granularity. The instruction categories groups together operators with similar emantics e.g there are seperate categories for string operations like rep movsb, arithmetic operations, interrupts etc. The operators in certain categories all have the same taint semantics and we need not go any deeper, but others contain instructions that must be handled on a case by case basis. DATAXFER for instance, contains xchg, mov and bswap, among others, all of which require special attention.

In our example we will end up in the processMov function. The purpose of this function is basically to figure out which of the 4 mov cases we are considering. Pin provides the INS_IsMemoryRead/Write functions, and others, that allow us to figure this out. Quite usefully, it also provides a mechanism to determine the exact address written/read and the number of bytes written/read at run time. This saves us having to calculate the effective address ourselves. For our example we would use these functions to determine that we are writing to memory, from a register, and then use the following call to insert a run time hook to our taint propagation function:

INS_InsertCall(ins, IPOINT_BEFORE, AFUNPTR(simMov_RM),
    IARG_UINT32, INS_RegR(ins, INS_MaxNumRRegs(ins)-1),

You can see here the use of IARG_MEMORYWRITE_EA to get the effective address of the write and the use of INS_RegR to get the last read register (ecx in this case). At runtime this will result in the simMov_RM (simulate mov register to memory) function being called with the specified arguments. It is this function that will finally do the taint propagation.

As you can see there are many cases that must be considered, even for a seemingly trivial operator like mov. Even the above explanation doesn’t deal with the case where a register used in calculating an effective address is itself tainted and requires more code to process correctly. A potential solution, suggested by Silvio might be to do a case split in some cases and then have a default case for instructions not explicitly handled. A solution like this, that over-approximates the tainted data, could lead to extensive false positives though and is not really suitable for the kind of work I’m doing. This leaves one other obvious option for a ‘default case’, and that is to untaint all destination operands in instructions I do not handle. This will lead to an under-approximation of the amount of tainted data, until I encode the semantics of all instructions, but will eliminate false positives and allow me to work on other parts of the algorithm once I have encoded the most common instructions.

2 thoughts on “Difficulties in taint data propagation without an IR

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s